Notes from a "Practical guide to SVM Classification"
A Practical Guide to SVM Classification
Recommended steps:
Recommended steps:
- Transform data into SVM format
- Scale data [either [-1,+1] or [0,1]
- Try the RBF kernel function
- Use cross-validation to find the best parameters - C (penalty parameter of the error term) and Gamma - a parameter for the RBF kernel function
- Train with these parameters
- Test
- Do not have enough data to perform cross validation to determine the parameters
- Examples provided in paper show trivial datasets - 10's of features and 1000's of data items
0 Comments:
Post a Comment
<< Home