Saturday, June 04, 2005

Notes from a "Practical guide to SVM Classification"

A Practical Guide to SVM Classification

Recommended steps:
  1. Transform data into SVM format
  2. Scale data [either [-1,+1] or [0,1]
  3. Try the RBF kernel function
  4. Use cross-validation to find the best parameters - C (penalty parameter of the error term) and Gamma - a parameter for the RBF kernel function
  5. Train with these parameters
  6. Test
Issues:
  1. Do not have enough data to perform cross validation to determine the parameters
  2. Examples provided in paper show trivial datasets - 10's of features and 1000's of data items

0 Comments:

Post a Comment

<< Home